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FAR-FIELD MULTIMODAL ACOUSTIC RADIATION DIRECTIVITY
by Arthur V. Saule and Edward J. Rice

Lewis Research Center

ABSTRACT

Approximate equations for the far-field acoustic radiation patte:rns in
tne forward quadrant from a flanged circular duct, recently presented by Rice,
were compared with exact equations for both single and multimodal excitations.
The single mode comparison showed good agreement between the exact and approx-
imate equations for the principal lobes of higher radial order modes. For
lower and especially for zero radial order modes, there was some error in the
angular location and decibel level of principal lobe peak pressure obtained
from the approximate equation. Some agreement of sidelobes was also observed
although the approximate equation was not intended to simulate the sidelobes.
The multimodal approximate summation equations consisting only of a simple
function of directivity angle and un acoustic power biasing function were
checked against the exact equations for several distributions of modal power.
The results showed an excellent agreement with exact equations for all cases.
A check about significant modal participation in a multimodal pattern showed
that many modes contribute to the final level and shape of the directivity
curve but the major contributions appear to come from the higher radial order
medes.

INTRODUCTION

Information about the structure of propagating acoustic duct modes pro-
duced by turbofan engines is essential to the design of acoustic suppressors
in engine ducts. The modal structure can be determined directly from in-duct
acoustic pressure measurements. This approach has been successfully applied
for quite simple modal structures (Ref. 1); however, it may require sophisti-~
cated measurement and analysis tachniques to account for all participating
modes. The internal modal structure also can be obtained from far-field
directivity patterns. £n analysis of measured far-field acoustic radiation
patterns may provide a relatively simple way of identifying a modal structure
that is adequate for liner design.

The far-field acoustic radiation patterns produced by a single circular
duct mode and their directional characteristics have been theoretically
studied in the past for flanged ducts (Refs. 2 to 4), as well as for un-
flanged ducts (Refs. 4 and 5). Lately, multimodal radiation patterns repre-
senting summations of many dnct modes also have attracted some interest
(Ref. 6). The calculations required for a single mode as well as for multi-
modal summation are relatively straightforward but are usually time consuming.
Simplifying assumptions, however, can be made by which approximate directivity
patterns can be readily defined and evaluated.
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Approximate equations for the far-field acoustic radiation patterms in
the forward quadrant from a flanged circular duct were recently presented by
Rice (Refi. 7} for both single mode and multimodal excitations. In Ref. 7,
the single mode radiation equations for equal acoustic power per mode (Ref. 6)
were simplified, and the multimodal summation equations were made independent
of the number of participating modes. Thus, the approximate equations appear
to have considerable future potential in performing far-field acoustic calcu-
lations. The approximate equations also make it possible to treat cases other
than equal acoustic power per mode by use of an acoustic power biasing func-
tion. However, a wider acceptance and utility of the approximate equations
rests on the demonstration of the range of their validity and accuracy.

As indicated in Ref. 7, the single mode approximate equations were in-
troduced for the purpose of developing a method to determine the acoustic
power produced by multimodal sources. A cautioning note about the shortcom-
ings of the single mode approximate equations was also added in the refer-
ence. In the present paper, several single mode radiation patterns calculated
from the exact equation (Ref. 6) are compared to the patterns obtained from
the approximate equation (Ref. 7) to determine in more detail the range of
validity of the approximate approach. The single mode comparisons are made
for three categories of modes: (1) modes with varying radial order, but
with constant circumferential order and source frequency, (2) modes with vary-
ing circumferential order, but with constant radial order and source frequency,
and (3) the last cut-on modes with constant circumferential order, but with
varying radial order and source frequency.

Cbservations were made in Ref. 7 that modes with similar cut-off ratios
will produce similar directivity patterns and that the Principal lobes are
also dominant in multimodal radiation patterns. These observations lead to
development of simplified summation equations. Sets of relatively closely
spaced groups of principal lobes from exact radiation patterns at thrze direc-
tivity angles are examined in the present paper to check the assumptions aris-
ing from the above observations.

The mulrimodal approximate summation equation consisting only of a simple
function of directivity angle and an acoustic power biasing function was
checked in Ref. 7 for the equal acoustic power per mode case. In this paper,
exact calculations were made for two cases of unequal power rer mode, in addi-
tion to egqual acoustic power per mode, to test the validity of the approximate
multimodal summation equations over the entire range of forward quadrant direc-
tivity angles. Finally, modal participation in the directivity patterns of
multimodal summations is examined, and a comparison with a directivity typical
of experimental data is made.

SYMBOL LIST
c speed of sound, m/sec
D duct diameter, m
£ source frequency, Hz




3
J! derivative of Bessel function of first kind and ord2r m with re-
B spect to its argument
m circumferential order cf an acoustic mode (aisc order of Bessel
function)
o exponent of acoustic power biasing function, see Eq. (253)
P2 far-field nondimensional total mean-square pressure of all partici-
pating modes, see Eq. {22)
”
P; far-field nondimensional mean-square pressure of a single mode,
" Eq. (1)
(2 )7
p'm,u far-field mean-square pressure of principal lobe peak, see Eq. (11)
s total number of sidelobes in a directivity pattern, see Eq. (21)
s, number of aft sidelobes in a directivity pattern, see Eq. (20)
S¢ number of forward sidelobes in a directivity pattern, see Eq. (17)
z, position function of a node or lobe terminal, see Eq. (15)
*
zm . exact position function of principal lobe peak pressure, see Eq. (8)
>
I hardwall duct mode eigenvalue, see Eq. (4)
Bm " acoustic power biasing funcrion, see Eq. (25)
2
n frequency parameter, see Eg. (2)
u radial order of an acoustic mode
£ mode cut-off ratio, see Eq. (3)
m,u
] far-field directivity angle measured from inlet duct center line, deg
Y far—field directivity angle of a node, deg, see Eq. (13)
(wP)m . far-field directivity angle of principal lobe peak pressure, deg,

see Eq. (9)

Primed symbols denote derivatives wit® restect =0 <he arsumens

F2) =

DIRECTIVITY EQUATIONS

In Ref. 7, a number of approximate equations for far-field acoustic rad-
iation patterns in the forward quadrant from a flanged circular duct were pre-
sented for both single mode and multimcdal excitations. In this section, the
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so-called exact and approximate equations of interest are presented. They will
be used in later sections to calculate the far-field directivity patterns and
to check the validity of the approximate approach.

Single Mode Equations

A single mode far-field mean-square pressure acoustic radiation expression

for a flanged circular duct for equal acoustic power per mode was derived in
Ref. 6 and modified in Ref. 7 as follows:

12
sinzw I (rn sin w)h/l - (l/Em )2

2 2 5~ (1)
[} - (m/um’u) ][?l/ﬁm,u) ~ sin f]

where the frequency parameter n 1is defined as

2 N
Pm,u(w) =

n=Z2 (2)

and the mode cut-off ratio Em u is defined as
Hd

oy e (3)
m,u

g =

The mode eigenvalue o is determined from the following equation:

b4

Jé(am,u) =0 (4)

Equation (1) will be referred to here
It was derived for zero axial Mach number, negligible end reflections, and
the constant has been omitted. The equation is expressed in the notation of

Ref, 7, except for the modal subscripts m,r which are added here to emphasize
the single mode relations.

as an exact single mode equation.

In Ref. 7, the following approximate single mode acoustic radiation ex-
pPression was derived from Eq. (1):

2 2 sin ¢ sinz[}n(sin V- 1/ )ﬂ\ﬁ.- (1/% )2
m,u m,u
o, {9 = 2 2 22 (5>
’ T n[?i/gm )7 = sin é]

cquation (5) will bec referred to here as an
It was derived from Eq.

approximate single mode equation.
(1) by using the following assumptions:

2
(m/um’u) << 1 (&)

J'(7n sin y¢) = - 5 2 sin(®n sin © - a ) (N
o sin y Bhu

and
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The sinusocidal approximation to the Bessel function is known to be most
accurate when the Bessel function argument is large compared to the order.
Also Eq. () is satisfied only when the eigenvalue is large compared to the
order m. Thus it is anticipated that Eq. (5) will be an adequate approxima-
tion to Egq. (1) mainly for the higher order radial modes. Implicit to the
sine function in Eq. (7) is the assumption that (1/54 u) approximately defines
the location of the principal lobe peak pressure ampl{tude.

*
The exact position function for the principal lobe peak pressure, z

. \J . . m’UQ
can pe found by expanding Pm,u in a Taylor series about am,u, such as:

3 *
T = + P!l - . A}
Pm,u(zm,u) Pm,u(am,u) m,u(um,u)(zm,u “m,u’
+ 0.5 P" (o )(zX -a )2+ =0 (8)
- m,¢ m,u " Tm,u m,u T

Thus, the angular positions of the principal lobe peak pressure can be obtained
from

-1 z; u
= ] ——
(xlzl,)m’u sin — 9)
whereas the approximate location is given by (Ref. 7)
-1/ 1
(W) = sin ) (10)
P m,u Em’u

Some difference, therefore, is expected in the predicted position of principal
lobes between the exact and approximate equations.

The exact solution of the principal lobe peak pressure can be obtained by
substituting the exact position function z;’U (Eqg. (8)) into Eg. (1) yielding

*2 * /

A I TC LY A VTR G

2 _ "mpm ““m,u m,

’ 2 -ZZ)E.-(m/a )]
O, & m,} o, u
For the approximate approach, the following equation was derived in Ref. 7:
2 .71
@2 = (3 7) coc[up)m’ﬂ (12)

where (wP)m b is given by Eq. (10).

The difference between the approximate and more exact equations in the
number of sidelobes was already mentiomed in Ref. 7. In general, the number
of sidelobes in an acoustic radiation pattern can be determined from the loca-
tion of the sidelobe terminal or nodal points. The exact angular locations of
the sidelobe terminals can be determined from the following equation:

z
6 = sin”t (;%) (13)

where the inverse
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zg = (mm)sin ¥, (14)
is, according to the exact Eq. (1), the solution of the following equation:
' =
Jm(zo) 0] (152

The =z are recognized as the eigenvalues (see Eq. (4)) excluding the
one which produces the principal lobe peak. The ¢otal number of the sidelobes
then is equal to the total number of the sidelobe nodes, providing that

z, < (wn)

# o (16)

m,H

It follows that the exact number of the forward sidelobes, that is, the side-
lobes occurring forward of the principal lobe, is identically equal to the
radial order number

S = W (7

There is no simple analytical expression for the exact number of aft sidelobes.
The number, however, increases with the frequency parameter n.

In the approximate approach, the expression for the ncde location can be
written, according to approximate Eq. (5), as follows:

Yo 2144]

where s 1is a positive integer that is also equal to the number of the approx-
imate sidelobes. For the forward sidelobes

1fop., = TS
= sin —|-SrE—— (18)

“m,u
Sp = —2 (19)

The number of forward sidelobes, therefore, will generally differ for the
exact and approximate equations. For the aft sidelobes,

m - am
s @ —E (20)

and for the total number of sidelobes
s =T (21)

Thus, the total number of the approximate sidelobes, as also noted in Ref. 7,
is always constant for the same frequeacy regardless of mode orders m or .
The total number of sidelobes obtained from the exact and approximate equatiouns
will generally differ.

Multimodal Summation Equations

The total radiated far-field acoustic pressure at any given angular loca-
tion ¥ due to many modes can be expressed by the following summations:

2y = ) 2 [Pg u(w{] (22)
T 0 ?
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where mean-square acoustic pressure Pé .(v) is given by Eq. (1). EqQuarion (22)
will be referred to here as an exact multinodal summation equation. Ir is as-
sumed that all modes participating in the summation are equally weighted (equal
acoustic power per mode) . The exact multimodal sucmation equation includes the
coatributions from all principal lobes, as well as from all sidelobes at the
given directivity angle .

In Ref, 7, the following approximate summwation equations were derived:

P2(0) » 2 cos o (23)

for the equal acoustic power per mede case and

Pz(u) + 2 cos ¢ sin"y . (24)

for the unequal acoustic power per mode cases where n is an exponent of the
acoustic power biasing function

oy (llgm,u) (25)
Note that Eq. (23) is a special case of Eg. (24) when pn = 0. Equatioms (23)
and (24) will be referred to here as the approximate aultimodal summation equa-
tions, The approximate equations differ from the exact Eq. (22) in that the
approximate equations take into consideration only the contributions from the
Principal lobes at the given angular location v. They assume that modes wirh
similaz cut-off ratios vield similar principal lobe peak amplitudes, as can be
also ianferred from the approximate single mode Eq. (5).

COMPARISON OF SINGLE MODE PATTERNS

In chis section, several single mode radiation pattems calcula’ed from
the exact Eq. (1) are compared to the patterns obrained from the approximate
Eq. (5) in order to determine the range of validity of the approximate approach
Three classes of modes are considered: (1) modes with a varying radial order,
but with a constant circumferential order and source frequency; (2) modes with
2 varying circumferentiai order, but with a constant radial order and frequency
parameter; and (3) the last cut-on or Propagating modes with a constant circun-
ferential order, bur with varying radial order and frequency parameter.

Constant Circumferential Order Modes

Figures 1(a) to (d) show exact and approximate far-field directivity pat-
terns of wmodes (2, 0, 6.4), (2, 2, 6.4), (2, 3, 6.4), and (2, 5, 6.4), respec-~
tively. The figure compares directivity patterns vhere the total number of side-
lobes for the exact and approximete expression are very nearly equal. The desig-
nation used here £o5r the modes in the far-field radiation pattern (m, -, 7)),
differs from the conventional designation of in-duct nodes (a,u), because the
directivity patteras in the far field also depend on the source frequency param-

Figure 1(a) shows the differences berween principal lotes and the sidelobes
of exact (solid lines) and approximate (dash-dash lines) directivity patterns of
zero radial order mode (2, 0, 6.4). It is seen that differences exist in the
angular spread, angular position of the peak pressure, and the magnitude of peak
pressure level of the lobes. The cisagreement in the angular locations of the
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approximate and exact principal lobes of mode (2, 0, 6.4) is mainly due to the
essumption made in formulating the argument cf the sine function in the approx-
imate Eq (5). 1In Ref 7. it was assumed tha: the mode eigenvalue ap ,

(Eq. (4)) approximately defines the locarion of the principal lobe peaﬁ pres-
sure. However, the exact position funccion for the principal lobe peak pres-
sure, z;’L. can be found from Eq- (8). On the other hand, Figs. 1(b) to (d)
indicate that there is an excellent agreement between the exact and approximate
Principal liobes of the higher radial order modes (z, 2, 6.4), (2, 3, 6.4), and
{2, 5, 6.4). respectively. This is not an unexpected result because the ratio
(m/“m,u) of the constant circumferential ovder decreases (Eq. (6)) and the argu-
ment cof the Bessel funcrtien increases (Eq. (7)) which for both approximations
are in the right direction to improve the accuracy of the approximate Eq. (5).

The agreement between the exact and the approximate sidelobes also improves
as radial crder inrreases. It is especially noticeable for the first forward
and the first aft sidelobes with respect to the principal lobe. However, in all
rhree higher radial crder apprcximate patterns, an extra pseudo sidelobe appears
forward of the principal lobe (near v = 0), which does not exist in the exact
pattern.

Constant Radial Order Modes

Figures 2(a) to (c¢) show exact (solid lines) and approximate (dask-dash
lines) far-field acoustic directivity patterns of modes (3, 0, 6.4), (11, O,
6.4), and (16, 0, 6.4). The three modes chosen for this section belong to a
Special class of modes, called zero radial order modes. They represent the
limizing case for the use of the approximate single mode Eq. (5), as was already
indicated by mode (2, 0, 6.4) discussed in the previous section on the constant
circumferential order modes. The zero radial order modes, as seen from Figs.
2fa) to (c), represent tne case for which the approximations of Egs. (6) and (7)
will be the least accurate. It shculd thus be expected that Eg. (5) will also
be the least accurate for these modes.

It is seen from Fig. 2 that the differeaces in the angulat spread, location,
and peak pressure level between the exact and approximate principal lobes tend
to increase as circumferential mode order increases. In particular, one or more
pseuco sidelobes appear in the approximate patterns, which do not exist in the
2xact patterns. The differences in principal lobe peak pressure position could
be expected in view of the Previous discussion regarding the functions =z
and op . DMecrecver, the ratio (a/ag ) of the zero radial order modes inlreases
as the circumferential mode order increases.

The accuracy of approximate Eq. (5) can be improved by substituting the
pesition funetion Zy .  for mode eigenvalue Am,y in the sine function. The
results are shown in Figs. 2(a) to (c) by solid-dash-solid lines. For the worst
case shown here (Fig. 2(c)), even though the detailed structure of the lobe pat-
terns is di{ferent for the exact and the approximate calculations, the gross be-
havior of the principal lobe is described by the approximate equation. It was
pointed cut in Ref. 7 that for multimodal radiation patterms, errors of the kind
shown in Fig. 2(c) for a relatively few modes (mainly zero order modes) will not
be significant. This will be seen to be true in a later section of this paper.

Y —
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Last Prepagzring or Cut-On Modes

Figures 3(a) rc ‘c) ccmpare exact and approxinmate direcrivity vartemns of
modes (16 0 6 &), (1o, 2, 9.3), and (16, 5, 12.7), respectively They repre-
sent a ciass cf modes, wnicr are the last propagaiing or curt-cn wcdes of a number
of possible propagating or -ut-on modes. The last cut-con mode in a ser cI s2y-
eral propagating mcdes having the same circum-erential crder m may be derined
as the mode for wnich

> =) o (26)
m, . m,.+1

Tne last cui-on modes ate rt parri-ular inreresr to the duct suppressor de-
signer because these mcdes radiate mainiy to rhe ergine sideline and they can be
attenuated easier thzn otner wmodes Thev alsc have certain properties not pos-—
Sessed by other medes. For example, the last cut—-on medes have a relzzively low
Cut-off ratio ¢, ., apprcaciing unity cr the mcde actual cut-cfi. For modes
(16. 0, 6 4), (16, 2, 9.5 and (16, 5, 12 71, the cut-off ratios are 1.11, 1.10,
and 1.05, respectively. Fig.re 2 chows that as a consequence or relatively low
cut-off ratios, the principal lcbes o: exacr and spproximate parrerns have the
following three features in commen. Thev (1) peak near 20 -ciceline; (2) are im-
complete; and (3) are the last lobes in rhe patrern,

The last cut-cn modes, considered in rhis section, were obtained by keeping
the circumierential mcde order = constant and varving rthe source frequency
parameter n This resulted in the modal s:rucrures with inzreased radiezl mode
crder v. Thus it is seen frow Fig. 3 rhat the eiZect o; increased frequency
Parameteér ~ ocn exact and zpprowimate directiviry patterns is similar to =hat
already discussed in the section cn the consrant -ircumfereatial order medes,
that is, the differences tend rc decrease as tne freguency pzrameter and radial
order increase. As previcusly pointed cut, the error in the approximate Eq. (5)
regarding the principal lcbes will nct significantlv affect the zultimodal radi-
ation calculations.

ASSUMPTIONS ABOUT PRINCIPAL LOBES

in deriving the approximate mulrimedal summation equations in Ref. 7, such
as Eqs. (23) and (24} invroduced here, several assumptions were mzde aboLtr che
rele of the principal lecbes. For example, it was posiulated that the mode eigen-
value of _ or more precisely the reciprozal of the mede cut-cfi ratio im,.

approximately deiines the angular location cf the principal lobe pezk pressure
(e.g , Eq (10W).

Comparison cf the approximate and exacr patterns presented previously in
Figs 1 to 3 indicated thatr this assumprion gave a wvery gocd agreement for all
nigher radial crder modes. But it was alsc shown that for lswer and especially
for zero radial order modes the aporoximate location of the principal lobe peak
pressure differed from the exact lccaticn. The reason for -he difference was
because the exact location ¢f the principal lobe peak pressure is determined by
the position funcriom Zgp,. given by Eq. (8) rather than by the mode eigenvalue
g, used in the apprcximate approz-h (e.g., Eq. (4)).

. . : - - . * .
The values of principal lobe pecsition func:ion Ip,. and mede exginvalues
. 4are compared in Fig. 4 whi-b snows that the values of tunction 2 con-
? - P @,y -
sistently excead rhe eigenvalues dm,. f°r all zero radial crder modes. How-
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ever, for the modes with radial orders greater than zero, the difference between
th2 two values becomes smaller as radial mode order incrcases.

Figure 5 shows the angular variation of the approximate and exact relative
directivity level of the principal lobe peak pressure. For the given frequency
parameter n of 6.4, fifty-two cut-on modes are involved (omitting modes with a
circumferential order equal to zero). The dash-dash curve represents the loci
of the approximate principal lobe peak pressure level as calculated from Eq. (12)
with the directivity angle defined by Eq. (10). The symbols show the exact rel-
ative directivity level of the principal lobe peak pressure (Zq. (11)) with the
directivity angle defined by Eq. (9). The exact levels contrary to the approxi-
mate levels do not follow a single curve. Instead, it appears that they tend to
form clusterlike structures falling in a seemingly unorgenized fashion on or te-
low the approximate curve (Eq. (12)) within about 2 dB. A closer look at the
discrete points, however, indicates that they are quite organized. In general,
the lowest point at any angle { represents the zero radial order mode. The
point above is for the next higher radial order mode, and so on. The approximate
curve generally cuts through the points representing the modes having the highest
radial order. An exception occurs near the 90° angle where the approximate curve
falls below the exact points. At 90°, as seen from Eq. (12), the approximate
principal lobe peak pressure is equal to zero. As seen from Fig. 5, the exact
principal lobe peak pressure, obtained from Eq. (1l1), has a finite value at 90°
greater than zero. The three groups of points encircled at about 15°, 45°, and
70° will be subsequently discussed.

As stated in Ref. 7, one of the 'implications of approximate single mode
Eq. (5) is that all modes with approximately the same cut-off ratio will have
approximately the same radiation pattern. It follows then that all modes witn
approximately the same cut-off ratic Em,y also will have approximately the same
Principal lobe peak pressure level and angular position (e.g., Eq. (10)). Equa-
tion (10) also shows that as the cut-off ratio approaches unity, the approximate
angular position of principal lobe peak prassure approaches 90°. The mode cut-
off ratio diagram shown in Fig. 6 displays the 52 modes used in the previous fig-
ure as a function of the cut-off ratio. It is seen that the mode cut-off ratio
density increases considerably as the cut—off ratio of the modes approaches unity,
It might be expected then that the maximum density of the principal lobe peak
pressure level would occur near the 90°-sideline. However, Fig. 5 indicates that
the region between about 15° and 75° is the most densely populated region. On
the other hand, the regions near the axis and 90°-sideline have only 2 and 3
principal lobe peaks, respectively. Moreover, in the region near the 90°-sideline,
the portion between modes (2, 5, 6.4) and (7, 3, 6.4), approximately 10° wide, is
completely void of any principal lobe peaks. The dispersion in angular position
of the high density of the modes with cut-cff ratios near unity results from the
nonlinear relation between cut-off ratio and angular position (Eq. (10)). The
cut—off ratio abscissa, also shown in Fig. 5, illustrates this nonlinear relatiom.

The three previously identified groups of principal lobes at about 15°, 45°,
and 70° (Fig. 5) are further studied in Fig. 7. The figure shows the relative
directivity level of individual principal lobes, overall levels, and multimodal
summation levels as obtained from the exact equation. Similarity of individual
principal lobe contours, peak levels, and angular locations within each group of
modes is apparent and tends to substantiate the assumption of similarity made in
developing the approximatz summation equations. In addition, Fig. 7 shows an ex-
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cellent agreement between exact (Eq. (22)) and approximate (Egq. (23)) multimodal
Sumpation equations. There is also a relatively good agreement between the level
of the multimodal summations and the overall lobe peak level for the first clus-—
ter. For the second and the third clusters, the overall lobe peak levels are
below the multimodal summation level by about 3 and 7 dB, respectively. The deci-
bel shortage indicates that more modes than contained within the mode groups in
Fig. 7 contribute to the total summation,

MULTIMCDAL SUMMATION

Figures 8(a) to (c¢) compare the angular distribution of relative directivity
level of exact (Eq. (22)) and approximate (Eqs. (23) and (24)) multimodal summa-
tions. Altogether, three far-field directivity models are considered: (1) equal
acoustic power per mode, n = 0; (2) unequal acoustic power per mode, n = 1; and
(3) unequal acoustic power per mode, n = 3, where n is the exponent of the acous-—
tic power biasing function Bm,u (Eq. (11)). 1In addition, points representing
Single mode exact principal lobe peak pressures (Eq. (11)) and loci of approxi-
mate principal lobe peak pressure (Eq. (12)) are also siiown in the figures.

It is seen from the figures that for all three directivity models considered,
there is, in general, excellent agreement between approximate and exact Summa-
tions. The results indicate that the errors in the lobe approximations are not
significant in the total summation for a distribution of modes, regardless of the
directivity model. The single mode errors in the principal lobe peak pressures
are indicated in Fig. 8 by the deviation of the single mode symbols from the ap-
proximate top curve. It is seen that the largest deviation, as discussed previ-
ously (e.g., Fig. 5), are exhibited by the zero and low radial order modes. Thus,
it also appears that the final result may be mainly controlled by the distribu-~
tion of the nigner radial order modes.

MODAL PARTICIPATION

The excellent agreement between exact and approximate multimodal summations
found in the previous section is partly explained by the higher radial order
wmodes exerting the controlling effect on the final result of the exact summation.
This explanation is based on the previous observations that the principal 1lobe
peak level loci, represented by a single curve in the approximate approach, is
the upper limit approached by the exact principal lobe peak directivity levels
of the higher radial order modes. Consequertly, this raises the questions about
how significant then is the contribution by the lower radial order modes (zero
order in particular) to the final result and whether it is necessary to account
tor all the participating modes to achieve similar far-field directivity patcterns.

A modal participation in a multimodal summation (n = 1) is illustrated in
Fig. 9. Alctogether, a total of 78 propagating or cut-on modes are involved for
the given source frequency parameter n of 7.8. The modes have circumferential
mode order m ranging from 1 to 22 with anywhere from 1 to 8 radial orders par-
ticipating in each circumferential order. 1In Fig. 9(a), the total modal distri-
bution for each circumferential order is shown at 7 discrete angles from about
12.5° to 80.5°. The solid limes connect the contributions at each angle of all
the radial order modes associated with each circumferential order. At each angle,
all circumferential orders are participating, but the contribution by some orders
is relatively small and can be negiected. The angular ievels singled out by
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square symbols indicate the last circumferential order that is still making a rel-
atively significant contribution (0.5 dB) to the overail level atr thac angle.

For example, at the angle of 12.5° there are 5 circumferential orders (containing
34 radial order modes) which make significant contributions at this directivity
angle. The contribution of the remaining 17 circumferential orders at angle

12.5° is negligible. As directivity angle increases, more circumferential orders
are participating with significant contributions.

The lower circumferential orders are contributing more than the higher cir-
cumferential orders because they have more cut—on radial order modes. Not all
radial order modes, however, contribute equally. An example, showing radial
order mode contributions, is illustrated in Fig. 9(b) for the modes having the
Circumferential order m = 1. The contribution of each of the total of 8 pos-
sible cut-on radial order modes is shown at discrete angles. The figure shows
that at the majority of the discrete directivity angles, a single radial order
mode having its principal lobe peak at or very close to these angles establishes
the overall level. Furthermore, it is seen that the overall level is established
by modes having radial order greater than zero. Figure 9(b) also shows thac the
overall level of the m =1 modes has a directivity that differs from that of
the total summation from all circumferantial orders. It indicates that more than
3 single circumferential order must be considered at cach angle to achieve a di-
rectivity pattern similar to the total sumnmation directivity pattemrn.

Figure 9(c) compares the exact (Eq- (8)) and approximate (Eq. (10)) muleti-
modal summation results for a directivity representative of experimental data.
The data are for the blade passing frequency tone and were obtained from a full
scale high bypass research fan tested at 90 percent fan speed in a static outdoor
acoustic test facility at NASA Lewis Research Center (Ref. 8). A good agreement
is indicated at all seven directivity angles by using an acoustic power biasing
éxponent n equal to 7.8.

SUMMARY OF RESULTS

In this paper, several single mode and multimodal radiation patterns calcu-
lated from exact equations were compared to the patterns obtained from Rice's
approximate equations to determine the range of validity of the approximate ap-
proach. For the single mode cases, the gross beshavior of the principal lobes was
described by the approximate equation. For higher radial order modes there was,
as expected, an excellent agreement between the exact and zpproximate contours,
peak levels, and angular positions of all the principal lobes considered in this
peper. The approximate single mode equatioms were found to be the least accurate
for the zero radial order modes. Some agreement bectween the exact and approxi-
mate sidelobes was observed although the approximate equation was not intended to
simulate the sidelobes.

Several individual groups of closely spaced principal lobes were checked for
the similarity characteristics assumed in formulating the approximate summation
equations. It was shown that modes with similar cut—off ratios have similar
principal lobe peak levels at approximately the csame directivity angles as as-
sumed.

A comparison of exact and approximate multimodal summation equations showed
an excellent agreement between approximate and exact summations. Examples of
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three different distributions of modal acoustic power indicated that sidelobes
have a negligible effect on the multimodal directivity level, and the summation
is mainly controlled by the principal lobes of higher radial order modes.

The significance of zero and lower radial order modes to the final result
and the number of modes needed to achieve similar far-field directivity patterns
was examined by tracing the contributions of the sets of radial order modes hav-
ing the same circumferential order and by tracing, on 2 selective basis, the con-
Cributions of singlzs radial order modes in a constant circumferential order set.
The result demonstrated that the main contributions appeared to come from higher
radial order mocdes. Good agreement was also zchieved between exact and avoproxi-
mate summations for a directivity typical of experimental data.
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